/PROGRAMMING LANGUAGE
ISSUES

® Procedural vs. Nonprocedural ® Organizational Issues

® Goals of Software Engineering O Culture and Psychological

View
® Language-Specific Issues

O Education and Training,

O Control Structures Resources Required, and

O Data Typing Cost

O Subprograms and Collections @ Language Selection

O Structured Programming O Trends by Application
Domain

O Object-Oriented Programming

QO Criteria for Selection

O Application Domains
O Assessment
® Compiler-Specific Issues 51

/ Software Engineering \

Software Development
Engineering

Lifecycle

\ 5-2 J

Software Engineering
/ Procedural Vs. Nonprocedural \
Languages

Non-Procedural

Third Generation

-_ Second Generatloné Procedural

-« First Generation

| | | | | _

| | | |
1960 1970 1980 1990 2000

® Procedural Language - Capable of
detailing the steps to be taken to achieve
desired results

® Non-Procedural Language - Capable of
detailing the desired results (the

\ language translator creates the steps)

Efficiency

Software Engineering
/ Goals of Software Engineering \

Understandability

Reliability

Software Engineering
/ Language-Specific Issues
Control Structures

Data Typing
Subprograms and Collections

Structured Programming

Application Domains

Object-Oriented Programming

~

/Q e 6 o o o

o/

Module y

v

Exit-Condition
Loop ¢

/ Software Engineering

Control Structures

If-Then-
Else

L

Entry-
Condition
Loop

Case

\

Software Engineering

Control Structures, Continued

Module

'

If-Then-

\

Software Engineering

Control Structures, Continued

Exit-Condition Entry-
Loop Condition
Loop

'

Software Engineering

/

.

Character/Byte
Integer

Float

Double Float

Aggregate Types

Array

Record

Scalar Types

\

Data Typing

/ Software Engineering \
Subprograms and Collections

® Subprograms

QO Functions - return a specific value, like
the sin of an angle

O Procedures - perform a series of
operations, returning zero or more
values, like reading a line from a file

® Collections

O Package - a group of data, subprograms, and
other software constructs

O Class - a group of data and subprograms
related to a number of similar objects

. oy

Software Engineering \
Structured Programming

BEks

5-11 /

i ; Message 1 g

Object C Object D
gmssage) g
Event 1 Event 2

/ Software Engineering
Object-Oriented Programming

Object A Object B

Message 3

5-12

\

Software Engineering

/

.

Application Domain

Application Domains

Influence
and Support

Development Methodology

Determines

Required Language Features

Influences

5-13

~

Available Tools

Code
Size

/ Software Engineering

Compiler-Specific Issues

A

B
-- Compiler --

Compiler
Speed

A

Code

Speed

C A B C
-- Compiler --
A
A B C
-- Compiler -- 5-14

\

/ Software Engineering \

Organizational Issues
® Culture and Psychological View

® Education and Training,
Resources Required, and Cost

.)

Software Engineering
/ Culture and Psychological View \

Culture

Psychological View

Education & Training

Resources Required

/ Software Engineering

Resources Reo

Education and Training, \

uired, and Cost

Culture
Psychological View
Education & Training

Resources Required

/ Software Engineering

Language Selection
® Trends by Application Domain
® Criteria for Selection

® Assessment

~

. sy

Software Engineering
/ Trends by Application Domain

Some Application Domains

Systems Software

Real-Time Software

\

el e—

Business Software
Engineering/Scientific Software
Personal Computer Software

Artificial Intelligence Software

i = Software Development Across Domains
|
II = i ® Structured
—

=I“| === |, le Object-Oriented
= nEees _
® Fourth Generation

Embedded Software N =

\ 5-19

—san

/ Software Engineering

® N O o AW N

Criteria for Selection

Some Criteria --
1.

Application domain

Algorithmic and computational complexity
Environment in which the software will execute
Performance considerations

Data structure complexity

Knowledge of software development staff
Availability of a good compiler or cross-compiler

Life cycle costs of software development

Software Engineering
/ Assessment

Assessing a Programming Language - Develop a Yardstick and a Buy-In

L

® Determine criteria for selection
® Set weights for each criterion

® Interact with your organization - get a buy-in for
the above

® Select an assessment team from various
representative groups in your organization

® Perform the assessment analytically

® Brief organization on the results of the
assessment and discuss - get a buy-in for the
fairness of the assessment

® Reassess if necessary
\0 Select language and brief the organization

\

