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Software Engineering
/ Procedural Vs. Nonprocedural \
Languages

Non-Procedural

Third Generation
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® Procedural Language - Capable of
detailing the steps to be taken to achieve
desired results

® Non-Procedural Language - Capable of
detailing the desired results (the

\ language translator creates the steps)
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Understandability
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Software Engineering
/ Language-Specific Issues
Control Structures

Data Typing
Subprograms and Collections

Structured Programming

Application Domains

Object-Oriented Programming
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Control Structures
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Software Engineering

Control Structures, Continued

Module
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Control Structures, Continued
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/
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Character/Byte
Integer

Float

Double Float

Aggregate Types

Array

Record

Scalar Types

\

Data Typing
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Subprograms and Collections

® Subprograms

QO Functions - return a specific value, like
the sin of an angle

O Procedures - perform a series of
operations, returning zero or more
values, like reading a line from a file

® Collections

O Package - a group of data, subprograms, and
other software constructs

O Class - a group of data and subprograms
related to a number of similar objects

. oy
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Structured Programming
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/ Software Engineering
Object-Oriented Programming

Object A Object B

Message 3
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Application Domain

Application Domains

Influence
and Support

Development Methodology

Determines

Required Language Features

Influences
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Compiler-Specific Issues

A
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-- Compiler --

Compiler
Speed
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Organizational Issues
® Culture and Psychological View

® Education and Training,
Resources Required, and Cost
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/ Culture and Psychological View \

Culture

Psychological View

Education & Training

Resources Required
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Resources Reo

Education and Training, \

uired, and Cost
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Language Selection
® Trends by Application Domain
® Criteria for Selection

® Assessment
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Software Engineering
/ Trends by Application Domain

Some Application Domains

Systems Software

Real-Time Software

\

el e—

Business Software
Engineering/Scientific Software
Personal Computer Software

Artificial Intelligence Software

i = Software Development Across Domains
|
II = i ® Structured
—

=I“| === |, le Object-Oriented
= nEees _
® Fourth Generation

Embedded Software N =
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® N O o AW N

Criteria for Selection

Some Criteria --
1.

Application domain

Algorithmic and computational complexity
Environment in which the software will execute
Performance considerations

Data structure complexity

Knowledge of software development staff
Availability of a good compiler or cross-compiler

Life cycle costs of software development




Software Engineering
/ Assessment

Assessing a Programming Language - Develop a Yardstick and a Buy-In

L

® Determine criteria for selection
® Set weights for each criterion

® Interact with your organization - get a buy-in for
the above

® Select an assessment team from various
representative groups in your organization

® Perform the assessment analytically

® Brief organization on the results of the
assessment and discuss - get a buy-in for the
fairness of the assessment

® Reassess if necessary
\0 Select language and brief the organization

\




